
1

HDF5 Groups
An HDF5 group is a structure containing zero or more HDF5 objects. A group has two parts:

● A group header, which contains a group name and a list of group attributes.
● A group symbol table, which is a list of the HDF5 objects that belong to the group.

HDF5 Datasets
A dataset is stored in a file in two parts: a header and a data array.
The header contains information that is needed to interpret the array portion of the dataset,
as well as metadata (or pointers to metadata) that describes or annotates the dataset. Header
information includes the name of the object, its dimensionality, its number-type, information
about how the data itself is stored on disk, and other information used by the library to speed up
access to the dataset or maintain the file's integrity.
There are four essential classes of information in any header: name, datatype, dataspace, and
storage layout:
Name. A dataset name is a sequence of alphanumeric ASCII characters.
Datatype. HDF5 allows one to define many different kinds of datatypes. There are two
categories of datatypes: atomic datatypes and compound datatypes. Atomic datatypes can also
be system-specific, or NATIVE, and all datatypes can be named:

● Atomic datatypes are those that are not decomposed at the datatype interface level,
such as integers and floats.

● NATIVE datatypes are system-specific instances of atomic datatypes.
● Compound datatypes are made up of atomic datatypes.
● Named datatypes are either atomic or compound datatypes that have been specifically

designated to be shared across datasets.
Atomic datatypes include integers and floating-point numbers. Each atomic type belongs to a
particular class and has several properties: size, order, precision, and offset. In this introduction,
we consider only a few of these properties.
Atomic classes include integer, float, string, bit field, and opaque. (Note: Only integer, float and
string classes are available in the current implementation.)
Properties of integer types include size, order (endian-ness), and signed-ness (signed/
unsigned).
Properties of float types include the size and location of the exponent and mantissa, and the
location of the sign bit.
The datatypes that are supported in the current implementation are:

● Integer datatypes: 8-bit, 16-bit, 32-bit, and 64-bit integers in both little and big-endian
format

● Floating-point numbers: IEEE 32-bit and 64-bit floating-point numbers in both little and
big-endian format

● References
● Strings

NATIVE datatypes. Although it is possible to describe nearly any kind of atomic datatype,
most applications will use predefined datatypes that are supported by their compiler. In HDF5
these are called native datatypes. NATIVE datatypes are C-like datatypes that are generally
supported by the hardware of the machine on which the library was compiled. In order to be
portable, applications should almost always use the NATIVE designation to describe data
values in memory.

2

The NATIVE architecture has base names which do not follow the same rules as the others.
Instead, native type names are similar to the C type names. The following figure shows several
examples.
Examples of Native Datatypes and Corresponding C Types

Example Corresponding C Type

H5T_NATIVE_CHAR signed char

H5T_NATIVE_UCHAR unsigned char

H5T_NATIVE_SHORT short

H5T_NATIVE_USHORT unsigned short

H5T_NATIVE_INT int

H5T_NATIVE_UINT unsigned

H5T_NATIVE_LONG long

H5T_NATIVE_ULONG unsigned long

H5T_NATIVE_LLONG long long

H5T_NATIVE_ULLONG unsigned long long

H5T_NATIVE_FLOAT float

H5T_NATIVE_DOUBLE double

H5T_NATIVE_LDOUBLE long double

H5T_NATIVE_HSIZE hsize_t

H5T_NATIVE_HSSIZE hssize_t

H5T_NATIVE_HERR herr_t

H5T_NATIVE_HBOOL hbool_t

A compound datatype is one in which a collection of several datatypes are represented as a
single unit, a compound datatype, similar to a struct in C. The parts of a compound datatype
are called members. The members of a compound datatype may be of any datatype, including
another compound datatype. It is possible to read members from a compound type without
reading the whole type.
Named datatypes. Normally each dataset has its own datatype, but sometimes we may want to
share a datatype among several datasets. This can be done using a named datatype. A named
datatype is stored in the file independently of any dataset, and referenced by all datasets that

3

have that datatype. Named datatypes may have an associated attributes list.

Dataspace. A dataset dataspace describes the dimensionality of the dataset. The dimensions
of a dataset can be fixed (unchanging), or they may be unlimited, which means that they are
extendible (i.e. they can grow larger).
Properties of a dataspace consist of the rank (number of dimensions) of the data array,
the actual sizes of the dimensions of the array, and the maximum sizes of the dimensions
of the array. For a fixed-dimension dataset, the actual size is the same as the maximum
size of a dimension. When a dimension is unlimited, the maximum size is set to the value
H5P_UNLIMITED. (An example below shows how to create extendible datasets.)
A dataspace can also describe portions of a dataset, making it possible to do partial I/O
operations on selections. Selection is supported by the dataspace interface (H5S). Given an n-
dimensional dataset, there are currently four ways to do partial selection:

1. Select a logically contiguous n-dimensional hyperslab.
2. Select a non-contiguous hyperslab consisting of elements or blocks of elements

(hyperslabs) that are equally spaced.
3. Select a union of hyperslabs.
4. Select a list of independent points.

Since I/O operations have two end-points, the raw data transfer functions require two dataspace
arguments: one describes the application memory dataspace or subset thereof, and the other
describes the file dataspace or subset thereof.

Storage layout. The HDF5 format makes it possible to store data in a variety of ways. The
default storage layout format is contiguous, meaning that data is stored in the same linear way
that it is organized in memory. Two other storage layout formats are currently defined for HDF5:
compact, and chunked. In the future, other storage layouts may be added.
Compact storage is used when the amount of data is small and can be stored directly in the
object header.
Chunked storage involves dividing the dataset into equal-sized "chunks" that are stored
separately. Chunking has three important benefits.

1. It makes it possible to achieve good performance when accessing subsets of the
datasets, even when the subset to be chosen is orthogonal to the normal storage order
of the dataset.

2. It makes it possible to compress large datasets and still achieve good performance when
accessing subsets of the dataset.

3. It makes it possible efficiently to extend the dimensions of a dataset in any direction.

HDF5 Attributes
Attributes are small named datasets that are attached to primary datasets, groups, or named
datatypes. Attributes can be used to describe the nature and/or the intended usage of a dataset
or group. An attribute has two parts: (1) a name and (2) a value. The value part contains one or
more data entries of the same datatype.
The Attribute API (H5A) is used to read or write attribute information. When accessing
attributes, they can be identified by name or by an index value. The use of an index value
makes it possible to iterate through all of the attributes associated with a given object.
The HDF5 format and I/O library are designed with the assumption that attributes are small
datasets. They are always stored in the object header of the object they are attached to.
Because of this, large datasets should not be stored as attributes. How large is "large" is not
defined by the library and is up to the user's interpretation. (Large datasets with metadata can
be stored as supplemental datasets in a group with the primary dataset.)

4

Hyperslabs are portions of datasets. A hyperslab selection can be a logically contiguous
collection of points in a dataspace, or it can be regular pattern of points or blocks in a
dataspace. The following picture illustrates a selection of regularly spaced 3x2 blocks in an 8x12
dataspace.
Hyperslab selection
 X X X X X X X X

 X X X X X X X X

 X X X X X X X X

 X X X X X X X X

 X X X X X X X X

 X X X X X X X X

This hyperslab has the following parameters: start=(0,1), stride=(4,3), count=(2,4), block=(3,2).

Four parameters are required to describe a completely general hyperslab. Each parameter is an
array whose rank is the same as that of the dataspace:

● start: a starting location for the hyperslab. In the example start is (0,1).
● stride: the number of elements to separate each element or block to be selected. In the

example stride is (4,3). If the stride parameter is set to NULL, the stride size defaults to 1
in each dimension.

● count: the number of elements or blocks to select along each dimension. In the example,
count is (2,4).

● block: the size of the block selected from the dataspace. In the example, block is (3,2).
If the block parameter is set to NULL, the block size defaults to a single element in each
dimension, as if the block array was set to all 1s.

Naming conventions
All C routines in the HDF 5 library begin with a prefix of the form H5*, where * is a single letter
indicating the object on which the operation is to be performed:

● H5F: File-level access routines.
● Example: H5Fopen, which opens an HDF5 file.
● H5G: Group functions, for creating and operating on groups of objects.
● Example: H5Gset,which sets the working group to the specified group.
● H5T: DataType functions, for creating and operating on simple and compound datatypes

to be used as the elements in data arrays.
● Example: H5Tcopy,which creates a copy of an existing datatype.

5

● H5S: DataSpace functions, which create and manipulate the dataspace in which the
elements of a data array are stored.

● Example: H5Screate_simple, which creates simple dataspaces.
● H5D: Dataset functions, which manipulate the data within datasets and determine how

the data is to be stored in the file.
● Example: H5Dread, which reads all or part of a dataset into a buffer in memory.
● H5P: Property list functions, for manipulating object creation and access properties.
● Example: H5Pset_chunk, which sets the number of dimensions and the size of a chunk.
● H5A: Attribute access and manipulating routines.
● Example: H5Aget_name, which retrieves name of an attribute.
● H5Z: Compression registration routine.
● Example: H5Zregister, which registers new compression and uncompression functions

for use with the HDF5 library.
● H5E: Error handling routines.
● Example: H5Eprint, which prints the current error stack.
● H5R: Reference routines.
● Example: H5Rcreate, which creates a reference.
● H5I: Identifier routine.
● Example: H5Iget_type, which retrieves the type of an object.

#include "hdf5.h"
#define H5FILE_NAME "SDS_row.h5"

int main (int argc, char **argv) {
 /* HDF5 APIs definitions */
 hid_t file_id; /* file and dataset identifiers */
 hid_t plist_id; /* property list identifier(access template) */
 herr_t status;

 int mpi_size, mpi_rank;
 MPI_Comm comm = MPI_COMM_WORLD;
 MPI_Info info = MPI_INFO_NULL;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(comm, &mpi_size);
 MPI_Comm_rank(comm, &mpi_rank);

 /* Set up file access property list with parallel I/O access */
 plist_id = H5Pcreate(H5P_FILE_ACCESS);
 H5Pset_fapl_mpio(plist_id, comm, info);

 /* Create a new file collectively. */
 file_id = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, plist_id);

 /* Close property list. */
 H5Pclose(plist_id);

6

 /* Close the file. */
 H5Fclose(file_id);

 MPI_Finalize();

 return 0;
}

Writing Regularly Spaced Columns in C
In this example, you have two processes that write to the same dataset, each writing to every
other column in the dataset. For each process the hyperslab in the file is set up as follows:

count[0] = 1; count[1] = dimsm[1];
offset[0] = 0; offset[1] = mpi_rank;
stride[0] = 1; stride[1] = 2;
block[0] = dimsf[0]; block[1] = 1;

The stride is 2 for dimension 1 to indicate that every other position along this dimension will be
written to. A stride of 1 indicates that every position along a dimension will be written to.
For two processes, the mpi_rank will be either 0 or 1. Therefore:

● Process 0 writes to even columns (0, 2, 4...)
● Process 1 writes to odd columns (1, 3, 5...)

The block size allows each process to write a column of data to every other position in the

dataset.
Below is an example program for writing hyperslabs by column in Parallel HDF5:

#include “mpi.h”
#include "hdf5.h"
#include "stdlib.h"

7

#define H5FILE_NAME "SDS_col.h5"
#define DATASETNAME "IntArray"
#define NX 8 /* dataset dimensions */
#define NY 6
#define RANK 2

int main (int argc, char **argv) {

 hid_t file_id, dset_id; /* file and dataset identifiers */
 hid_t filespace, memspace; /* file and memory dataspace identifiers */
 hsize_t dimsf[2]; /* file dataset dimensions */
 hsize_t dimsm[2]; /* memory dataset dimensions */
 int *data; /* pointer to data buffer to write */
 hsize_t count[2]; /* hyperslab selection parameters */
 hsize_t stride[2];
 hsize_t block[2];
 hsize_t offset[2];
 hid_t plist_id; /* property list identifier */
 int i, j, k;
 herr_t status;

 int mpi_size, mpi_rank;
 MPI_Comm comm = MPI_COMM_WORLD;
 MPI_Info info = MPI_INFO_NULL;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(comm, &mpi_size);
 MPI_Comm_rank(comm, &mpi_rank);

 if (mpi_size != 2) {
 printf("This example to set up to use only 2 processes \n");
 printf("Quitting...\n");
 return 0;
 }

 /* Set up file access property list with parallel I/O access */
 plist_id = H5Pcreate(H5P_FILE_ACCESS);
 H5Pset_fapl_mpio(plist_id, comm, info);

 /* Create a new file collectively and release property list identifier. */
 file_id = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, plist_id);
 H5Pclose(plist_id);

 /* Create the dataspace for the dataset. */
 dimsf[0] = NX;
 dimsf[1] = NY;
 dimsm[0] = NX;
 dimsm[1] = NY/2;
 filespace = H5Screate_simple(RANK, dimsf, NULL);
 memspace = H5Screate_simple(RANK, dimsm, NULL);

8

 /* Create the dataset with default properties and close filespace. */
 dset_id = H5Dcreate(file_id, DATASETNAME, H5T_NATIVE_INT, filespace,

H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
 H5Sclose(filespace);

 /* Each process defines dataset in memory and writes it to the hyperslab in the file. */
 offset[0] = 0;
 offset[1] = mpi_rank;
 stride[0] = 1;
 stride[1] = 2;
 count[0] = 1;
 count[1] = dimsm[1];
 block[0] = dimsf[0];
 block[1] = 1;

 /* Select hyperslab in the file. */
 filespace = H5Dget_space(dset_id);
 H5Sselect_hyperslab(filespace, H5S_SELECT_SET, offset, stride, count, block);

 /* Initialize data buffer */
 data = (int *) malloc(sizeof(int)*(size_t)dimsm[0]*(size_t)dimsm[1]);
 for (i=0; i < dimsm[0]*dimsm[1]; i=i+dimsm[1]) {
 k = 1;
 for (j=0; j < dimsm[1]; j++) {
 data[i + j] = (mpi_rank +1) * k ;
 k = k * 10;
 }
 }

 /* Create property list for collective dataset write. */
 plist_id = H5Pcreate(H5P_DATASET_XFER);
 H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);

 status = H5Dwrite(dset_id, H5T_NATIVE_INT, memspace, filespace, plist_id, data);
 free(data);

 H5Dclose(dset_id);
 H5Sclose(filespace);
 H5Sclose(memspace);
 H5Pclose(plist_id);
 H5Fclose(file_id);

 MPI_Finalize();

 return 0;
}

h5dump:

HDF5 "SDS_col.h5" {
GROUP "/" {

9

 DATASET "IntArray" {
 DATATYPE H5T_STD_I32LE
 DATASPACE SIMPLE { (8, 6) / (8, 6) }
 DATA {
 (0,0): 1, 2, 10, 20, 100, 200,
 (1,0): 1, 2, 10, 20, 100, 200,
 (2,0): 1, 2, 10, 20, 100, 200,
 (3,0): 1, 2, 10, 20, 100, 200,
 (4,0): 1, 2, 10, 20, 100, 200,
 (5,0): 1, 2, 10, 20, 100, 200,
 (6,0): 1, 2, 10, 20, 100, 200,
 (7,0): 1, 2, 10, 20, 100, 200
 }
 }
}
}

